

ESTE DOCUMENTO NÃO SUBSTITUI O ORIGINAL

Programa Analítico de Disciplina								
QUI355	Intro	dução	à Eletro	química T	eórica			
Departamento	de Quír	nica - Ce	ntro de Ciênc	ias Exatas e Te	cnológicas			
Número de cré	editos:	4				Teóricas	Práticas	Total
Duração em se				Carga horária	a semanal	4	0	4
Períodos - ofei	reciment	to: I		Carga horária	a total	60	0	60

	Pré-requisitos	(Pré ou co-requisitos)*
QUI151 ou FIS344		

Ementa

Teoria clássica da dissociação eletrolítica. Interação íon-dipolo nas soluções eletrolíticas. Interação ião-ião nas soluções de eletrólitos. Fenômenos de desequilíbrio nas soluções de eletrólitos. Fundamentos de termodinâmica eletroquímica. Camada elétrica bipolar e fenômenos de adsorção na superfície de separação eletrodo-solução. Fundamentos da cinética eletroquímica. Alguns aspectos da eletroquímica aplicada.

Oferecimento aos Cursos

Curso	Modalidade	Período
Engenharia Química	Optativa	-
Física(BAC)	Optativa	-
Física(LIC)	Optativa	-
Licenciatura em Química(LIC)	Optativa	-
Química(BAC)	Optativa	-
Química(LIC)	Optativa	-

ESTE DOCUMENTO NÃO SUBSTITUI O ORIGINAL

QUI355 Introdução à Eletroquímica Teórica

Seq	Aulas Teóricas	Horas/Aula
1	Teoria clássica da dissociação eletrolítica	4
	1.1. Experimentos que demonstram a existência de íons	
	1.2. Equilíbrios iônicos nas soluções de eletrólitos	
	1.3. Deficiência da teoria clássica da dissociação eletrolítica	
2	Interação íon-dipolo nas soluções eletrolíticas	6
	2.1. Mecanismos de formação das soluções de eletrólitos	
	2.2. Energia da rede cristalina	
	2.3. Energia de solvatação	
	2.4. Energia de solvatação real e química 2.5. Entropia de solvatação e números de solvatação de íons	
	2.5. Entropia de solvatação e humeros de solvatação de ions	
3	Interação ião-ião nas soluções de eletrólitos	11
	3.1. Descrição termodinâmica dos equilíbrios nas soluções de eletrólitos	
	3.2. Teoria de Debye-Hückel e os coeficientes de atividade	
	3.3. Aplicação da teoria de Debye-Hücke	
	3.4. Solubilidade e a teoria de Debye-Hücke	
	3.5. Associação iônica nas soluções de eletrólitos	
	3.6. Métodos de descrever as propriedades termodinâmicas das soluções	
	eletrolíticas	
	3.7. Polietrólitos	
4	Fenômenos de desequilíbrio nas soluções de eletrólitos	6
	4.1. Característica geral dos fenômenos de desequilíbrio	
	4.2. Difusão e migração dos íons	
	4.3. Condutividade específica e equivalente	
	4.4. Número de transporte e métodos para determiná-los	
	4.5. Mobilidade limite dos íons	
	4.6. Mobilidade, condutividade e número de transporte em função da concentração	
5	Fundamentos de termodinâmica eletroquímica	8
	5.1. Potencial eletroquímico e equilíbrio na superfície de separação	
	eletrodo-solução	
	5.2. Equilíbrio do circuito eletroquímico	
	5.3. Semi-reações de oxi-redução e noção de potencial de eletrodo	
	5.4. f.e.m para determinação de propriedades termodinâmicas	
	5.5. Equilíbrio de membrana e potencial de membrana	
	5.6. Eletrodos de íon seletivo e enzimáticos	
	5.7. Membranas biológicas e bioeletroquímica	

ESTE DOCUMENTO NÃO SUBSTITUI O ORIGINAL

6	Camada elétrica bipolar e fenômenos de adsorção na superfície de separação eletrodo-solução	8
	6.1. Relação entre os fenômenos elétricos e os de adsorção na superfície de separação interfacial	
	6.2. Método de adsorção para estudar a camada bipolar	
	6.3. Fenômenos eletrocapilares	
	6.4. Capacidade da camada bipolar	
	6.5. Potenciais de carga nula e mecanismos de surgimento da f.e.m do circuito eletroquímico	
	6.6. Noções de modelo fundamentais sobre a camada bipolar	
	o.o. No good de Medele fandamentale coste à camada sipolar	
7	Fundamentos da cinética eletroquímica	7
	7.1. Característica garal des processos eletraquímicos	
	7.1. Característica geral dos processos eletroquímicos 7.2. Característica da polarização em condições de estágio limitador de transporte	
	polarográfico	
	7.3. Método de eletrodo giratório de disco	
	7.4. Método polarográfico	
	7.5. Influência da estrutura da camada bipolar e da natureza do metal na sobretensão do desprendimento do hidrogênio e na eletrorredução dos ânions	
	7.6. Regularidades dos processos eletródicos em condições de reação química	
	lenta	
	7.7. Polarização durante a formação de nova fase	
8	Alguns aspectos da eletroquímica aplicada	10
	8.1. Corrosão dos metais e métodos de proteção	
	8.2. Fontes eletroquímicas da corrente	
	8.3. Fabricação eletroquímica de produtos químicos	
	8.4. Eletroquímica e galvanotecnia	
	8.5. Métodos eletroquímicos de análise	

ESTE DOCUMENTO NÃO SUBSTITUI O ORIGINAL

QUI355 Introdução à Eletroquímica Teórica

Referências Bibliográficas

Bibliografia Básica:

- 1 BOCKRIS, J.; O'M; REDDY, A.K.N. Modern Eletrochemistry. 3 ed. Plenum Publishing Corporation, 1977. Vol. 1 and 2. [Exemplares disponíveis: Não informado.]
- 2 DAMASKIN, B.; PETRI. Fundamentos da Eletroquímica Teórica. Moscou: Mir, 1978. [Exemplares disponíveis: Não informado.]

Bibliografia Complementar: