

ESTE DOCUMENTO NÃO SUBSTITUI O ORIGINAL

Programa Analítico de Disciplina				
FIS391 Eletrônica Instrumental				
Departamento de Física - Centro de Ciências Exatas e Tecnológicas				
Número de créditos: 6		<u>Teóricas</u>	<u>Práticas</u>	<u>Total</u>
Duração em semanas: 15	Carga horária semanal	4	2	6
Períodos - oferecimento: I e II	Carga horária total	60	30	90

Pré-requisitos	(Pré ou co-requisitos)*
FIS203	

Ementa

Análise de circuitos de corrente contínua. Análise de circuitos de corrente alternada. Diodos semicondutores. Transistores de junção. Transistores de efeito de campo. Modelos para o transistor de junção. Análise para pequenos sinais. Amplificadores operacionais. Outros dispositivos eletrônicos. Circuitos lógicos.

Oferecimento aos Cursos

Curso	Modalidade	Período
Ciência da Computação	Optativa	-
Física(BAC)	Optativa	-
Física(LIC)	Optativa	-
Licenciatura em Física(LIC)	Optativa	-
Licenciatura em Química(LIC)	Optativa	-
Matemática(BAC)	Optativa	-
Química(BAC)	Optativa	-
Química(LIC)	Optativa	-

ESTE DOCUMENTO NÃO SUBSTITUI O ORIGINAL

FIS391 Eletrônica Instrumental

Seq	Aulas Teóricas	Horas/Aula
1	Análise de circuitos de corrente contínua	6
	1.1. Método das malhas e dos nós	
	1.2. Fontes de corrente	
	1.3. Teoremas de Norton, Thevenin e de Miller	
	1.4. Teoremas da superposição e da máxima transferência de potência	
2	Análise de circuitos de corrente alternada	8
	2.1. Formas de onda, valor médio e eficaz	
	2.2. Circuitos puramente R, C e L sob excitação CA	
	2.3. Conceitos de reatância e impedância, circuitos RLC	
	2.4. Ressonância	
	2.5. Potência em circuitos CA	
	2.6. Transformadores	
3	Diodos semicondutores	6
	3.1. Materiais semicondutores e a junção pn	
	3.2. O diodo semicondutor e suas características	
	3.3. Diferentes tipos de diodos	
	3.4. Circuitos com diodos	
4	Transistores de junção	5
	4.1. Construção dos transistores bipolares de junção	
	4.2. O transistor como amplificador	
	4.3. Configurações	
	4.4. Circuitos de polarização e estabilidade	
5	Transistores de efeito de campo	5
	5.1. Tipos de transistores de efeito de campo	
	5.2. Especificações dos FETs	
	5.3. Polarização do FET	
6	Modelos para o transistor de junção	5
	6.1. Modelo re	
	6.2. Modelo híbrido	
7	Análise para pequenos sinais	5
	7.1. Efeitos das impedâncias de entrada e de saída	

ESTE DOCUMENTO NÃO SUBSTITUI O ORIGINAL

	7.2. Circuitos em cascata7.3. Análise do FET para pequenos sinais7.4. Configurações compostas	
8	Amplificadores operacionais 8.1. Amplificador diferencial 8.2. Circuitos com o amp-op	8
9	Outros dispositivos eletrônicos 9.1. Dispositivos de dois terminais (NTC, PTC, LDR, etc.) 9.2. Transistor de unijunção 9.3. SCR, triac e diac	4
10	Circuitos lógicos 10.1. Funções lógicas e álgebra Booleana 10.2. Mapas de karnaugh 10.3. Flip-Flop 10.4. Contadores e registradores 10.5. Circuitos aritméticos	8

ESTE DOCUMENTO NÃO SUBSTITUI O ORIGINAL

FIS391 Eletrônica Instrumental

FIS391 Eletrônica Instrumental

Seq	Aulas Práticas	Horas/Aula
1	Análise de circuitos CA	4
2	Circuitos retificadores e fontes	2
3	Circuitos multiplicadores de tensão	2
4	Circuitos de polarização de transistores	4
5	Amplificadores	2
6	Receptor AM	4
7	Fonte de tensão transistorizada variável	2
8	Fonte de corrente com Amp-op	2
9	Controladores	4
10	Circuitos digitais	4

ESTE DOCUMENTO NÃO SUBSTITUI O ORIGINAL

FIS391 Eletrônica Instrumental

Referências Bibliográficas

Bibliografia Básica:

- 1 BOYLESTAD, R.; NASHELSKY, L. Dispositivos eletrônicos e teoria de circuitos. São Paulo: Prentice-Hall do Brasil, 1994. [Exemplares disponíveis: 5]
- 2 SEDRA, A. S. Microeletrônica. São Paulo: Pearson Prentice Hall, 2009. [Exemplares disponíveis: 5]
- 3 TOCCI, R. J. Sistemas digitais. São Paulo: Pearson Prentice Hall, 2011. [Exemplares disponíveis: 6]

Bibliografia Complementar:

- 4 HONENSTEIN, M. N. Microeletrônica circuitos e dispositivos. Rio de Janeiro: Prentice- Hall do Brasil, 1996. [Exemplares disponíveis: 1]
- 5 JOHNSON, D. E.; HILBURN, J. L.; JOHNSON, J. R. Fundamentos de análise de circuitos elétricos. Rio de Janeiro: Prentice-Hall do Brasil, 2000. [Exemplares disponíveis: 1]
- 6 LOURENÇO, A. C. Circuitos digitais. São Paulo: Érica, 2007. [Exemplares disponíveis: 3]
- 7 MILLMAN, J.; HALKIAS, C. C. Eletrônica, dispositivos e circuitos. São Paulo: McGraw-Hill do Brasil, 1981. V.1. [Exemplares disponíveis: 1]
- 8 MILLMAN, J.; HALKIAS, C. C. Eletrônica, dispositivos e circuitos. São Paulo: McGraw-Hill do Brasil, 1981. v.2. [Exemplares disponíveis: 1]