

## ESTE DOCUMENTO NÃO SUBSTITUI O ORIGINAL

| Programa Analítico de Disciplina                                  |                       |          |          |       |  |  |  |
|-------------------------------------------------------------------|-----------------------|----------|----------|-------|--|--|--|
| FIS270 Métodos da Física Teórica I                                |                       |          |          |       |  |  |  |
|                                                                   |                       |          |          |       |  |  |  |
| Departamento de Física - Centro de Ciências Exatas e Tecnológicas |                       |          |          |       |  |  |  |
| Número de créditos: 4                                             |                       | Teóricas | Práticas | Total |  |  |  |
| Duração em semanas: 15                                            | Carga horária semanal | 4        | 0        | 4     |  |  |  |
| Períodos - oferecimento: Le II                                    | Carga horária total   | 60       | 0        | 60    |  |  |  |

| Pré-requisitos (Pré ou co-requisitos)*                                            |  |  |  |  |
|-----------------------------------------------------------------------------------|--|--|--|--|
| FIS203                                                                            |  |  |  |  |
| Ementa                                                                            |  |  |  |  |
| Análise vetorial. Equações diferenciais ordinárias e parciais. Funções especiais. |  |  |  |  |
| Oferecimento aos Cursos                                                           |  |  |  |  |

| Curso                        | Modalidade  | Período |
|------------------------------|-------------|---------|
| Física(BAC)                  | Obrigatória | 4       |
| Física(LIC)                  | Obrigatória | 4       |
| Licenciatura em Física(LIC)  | Obrigatória | 4       |
| Licenciatura em Química(LIC) | Optativa    | -       |
| Química(BAC)                 | Optativa    | -       |
| Química(LIC)                 | Optativa    | -       |



## ESTE DOCUMENTO NÃO SUBSTITUI O ORIGINAL

## FIS270 Métodos da Física Teórica I

| Seq | Aulas Teóricas                                              | Horas/Aula |
|-----|-------------------------------------------------------------|------------|
| 1   | Análise vetorial                                            | 15         |
|     | 1.1. Definições                                             |            |
|     | 1.2. Rotação dos eixos coordenados                          |            |
|     | 1.3. Produtos escalar, vetorial e triplo                    |            |
|     | 1.4. Gradiente, divergente e rotacional                     |            |
|     | 1.5. Integração vetorial                                    |            |
|     | 1.6. Teorema de Gauss                                       |            |
|     | 1.7. Teorema de Stokes                                      |            |
|     | 1.8. Teoria do potencial                                    |            |
|     | 1.9. Lei de Gauss e equação de Poisson                      |            |
|     | 1.10. Teorema de Helmholtz                                  |            |
|     | 1.11. Coordenadas ortogonais                                |            |
|     | 1.12. Operadores diferenciais vetoriais                     |            |
|     | 1.13. Sistemas de coordenadas polares                       |            |
|     | 1.14. Sistemas de coordenadas polares                       |            |
|     | 1.15. Sistemas de coordenadas cilindricas                   |            |
|     | 1.15. Sistemas de coordenadas estendas                      |            |
| 2   | Equações diferenciais ordinárias e parciais                 | 20         |
|     |                                                             |            |
|     | 2.1. Equações diferenciais parciais e condições de contorno |            |
|     | 2.2. Equações diferenciais de primeira ordem                |            |
|     | 2.3. Separação de variáveis                                 |            |
|     | 2.4. Solução em série - Método de Frobenius                 |            |
|     | 2.5. A segunda variável                                     |            |
|     | 2.6. Equação não homogênea e a função de green              |            |
|     | 2.7. Equações diferenciais auto adjuntas                    |            |
|     | 2.8. Operadores hermitianos                                 |            |
|     | 2.9. Ortogonalização de operadores                          |            |
|     | 2.10. Completeza das autofunções                            |            |
|     | 2.11. Expansão da função de green em autofunções            |            |
| 3   | Funções especiais                                           | 25         |
|     | ,                                                           |            |
|     | 3.1. Funções de Bessel de primeira espécie                  |            |
|     | 3.2. Ortogonalidade                                         |            |
|     | 3.3. Funções de Neumann ou de Bessel de segunda espécie     |            |
|     | 3.4. Funções de Hankel                                      |            |
|     | 3.5. Funções de Bessel modificadas                          |            |
|     | 3.6. Expansões assimptóticas                                |            |
|     | 3.7. Funções de Bessel esféricas                            |            |
|     | 3.8. Polinômios de Legendre                                 |            |
|     | 3.9. Relações de recorrência e propriedades especiais       |            |
|     | 3.10. Funções de Legendre associadas                        |            |



### ESTE DOCUMENTO NÃO SUBSTITUI O ORIGINAL

- 3.11. Harmônicos esféricos
- 3.11. Harmonicos estencos3.12. Operadores de momento angular orbital3.13. Funções de Legendre de segunda espécie3.14. Funções de Hermite3.15. Funções de Laguerre



### ESTE DOCUMENTO NÃO SUBSTITUI O ORIGINAL

### FIS270 Métodos da Física Teórica I

### Referências Bibliográficas

#### Bibliografia Básica:

- 1 ARFKEN, G. B.; WEBER, H. J. Mathematical methods for physicists. 6. ed. Amsterdam: Elsevier, 2005. [Exemplares disponíveis: 11]
- 2 BOAS, M. L. Mathematical methods for physical sciences. New York: John Wiley & Sons, 1996. [Exemplares disponíveis: 1]
- 3 BUTKOV, E. Física matemática. Rio de Janeiro: Guanabara Dois, 1983. [Exemplares disponíveis: 16]

### **Bibliografia Complementar:**

- 4 APOSTOL, T. M. Mathematical analysis: a modern approach to advanced calculus. 1. ed. Reading, Massachusetts: Addison-Wesley, 1957. [Exemplares disponíveis: 1]
- 5 BAUMANN, G. Mathematica for Theoretical Physics. New York: Springer, 2005. [Exemplares disponíveis: 2]
- 6 DENNERY P. Mathematics for physicists. Mineola, Nova York: Dover Publicatons, 1996. [Exemplares disponíveis: 1]
- 7 MATHEWS, J. Mathematical methods of physics. 2. ed. Califórnia: Menlo Park, Benjamin Cummings, 1970. [Exemplares disponíveis: 2]
- 8 MORSE, P. M.; FESHBACH, H. Methods of theoretical physics. New York: McGraw-Hill, 1953. [Exemplares disponíveis: 2]