

Programa Analítico de Disciplina							
FIS204 Física IV							
Departamento de Física - Centro de Ciências Exatas e Tecnológicas							
Número de créditos: 4		Teóricas	Práticas	Total			
Duração em semanas: 15	Carga horária semanal	4	0	4			
Períodos - oferecimento: I e II	Carga horária total	60	0	60			

Pré-requisitos (Pré ou co-requisitos)*

FIS202 e FIS203 e (MAT241* ou MAT243)

Ementa

Equações de Maxwell. Ondas eletromagnéticas. Teoria da relatividade restrita. Radiação de corpo negro. Propriedades corpusculares da radiação. Propriedades ondulatórias das partículas. Modelos atômicos.

Oferecimento aos Cursos

Curso	Modalidade	Período
F(-:(DAO)	Ob signationing	1
Física(BAC)	Obrigatória	4
Física(LIC)	Obrigatória	4
Licenciatura em Física(LIC)	Obrigatória	4
Engenharia Mecânica	Optativa	-
Licenciatura em Química(LIC)	Optativa	-
Matemática(BAC)	Optativa	-
Matemática(LIC)	Optativa	-
Química(BAC)	Optativa	-
Química(LIC)	Optativa	-

FIS204 Física IV

Seq	Aulas Teóricas	Horas/Aula
1	Equações de Maxwell	6
	1.1. As equações de Maxwell	
	1.2. Campos magnéticos induzidos	
	1.3. Corrente de deslocamento	
	1.4. A equação de onda	
2	Ondas eletromagnéticas	6
	2.1. Velocidade das ondas eletromagnéticas	
	2.2. Ondas eletromagnéticas planas	
	2.3. Vetor Pointing - pressão da radiação	
	2.4. Polarização	
	2.5. Ondas estacionárias	
	2.6. Radiação de cargas aceleradas	
3	Teoria da relatividade restrita	14
	3.1. Constância da velocidade da luz	
	3.2. Simultaneidade	
	3.3. Dilatação do tempo e contração do comprimento	
	3.4. Transformação de Lorentz	
	3.5. Efeito Doppler relativístico	
	3.6. Massa e momento linear relativísticos	
	3.7. Força e energia relativística	
	3.8. Equivalência entre massa e energia	
	3.9. Transformações das grandezas dinâmicas	
	3.10. Colisões de alta energia	
	3.11. Princípio da equivalência - a relatividade geral	
4	Radiação de corpo negro	6
	4.1. Teoria clássica da radiação de cavidade	
	4.2. Teoria de Planck da radiação de cavidade	
	4.3. Consequências do Postulado de Planck	
5	Propriedades corpusculares da radiação	8
	5.1. Efeito fotoelétrico	
	5.2. Efeito Compton	
	5.3. Natureza dual da radiação eletromagnética	
	5.4. Produção de raios-X	
	5.5. Produção e aniquilação de pares	
	5.6. Interação da radiação coma a matéria	

6	Propriedades ondulatórias das partículas	8
	6.1. Postulado de Broglie 6.2. Dualidade onda-partícula 6.3. Partícula da incerteza de Heisenberg 6.4. Consequências do princípio da incerteza	
7	Modelos atômicos	12
	7.1. Modelos de Thomsom e Rutherford 7.2. Espectros atômicos 7.3. Modelo de Bohr 7.4. Modelo de Summerfeld 7.5. Princípio da correspondência	

FIS204 Física IV

Referências Bibliográficas

Bibliografia Básica:

- 1 EISBERG, R.; RESNICK, R. Física quântica. 4. ed. Rio de Janeiro: Campus, 1996. [Exemplares disponíveis: 16]
- 2 NUSSENZVEIG, H. M. Curso de física básica. São Paulo: Edgard Blucher, 1997. v. 3. [Exemplares disponíveis: 5]
- 3 NUSSENZVEIG, H. M. Curso de física básica. São Paulo: Edgard Blucher, 1997. v. 4. [Exemplares disponíveis: 14]
- 4 SEARS, F. W.; ZEMANSKY, M. W.; YOUNG, H. D.; FREEDMAN, R. A. Física III: eletromagnetismo. 12. ed. São Paulo: Addison Wesley, 2008. [Exemplares disponíveis: 60]
- 5 SEARS, F. W.: ZEMANSKY, M. W.: YOUNG, H. D.: FREEDMAN, R. A. Física IV: ótica e física moderna. 12. ed. São Paulo: Addison Wesley, 2008. [Exemplares disponíveis: 76]

Bibliografia Complementar:

- 6 ALONSO, M.; FINN, E. J. Física: um curso universitário. São Paulo: Edgard Blucher, 1972. v. 3 e 4. [Exemplares disponíveis: 1]
- 7 EISBERG, R. M.; LERNER, L. S. Física: fundamentos e aplicações. São Paulo: McGraw-Hill, 1983. v. 3. [Exemplares disponíveis: 10]
- 8 EISBERG, R. M.; LERNER, L. S. Física: fundamentos e aplicações. São Paulo: McGraw-Hill, 1983. v. 4. [Exemplares disponíveis: 10]
- 9 HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de física. 4. ed. Rio de Janeiro: Livros Técnicos e Científicos, 1996. v. 3. [Exemplares disponíveis: 27]
- 10 HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de física. 4. ed. Rio de Janeiro: Livros Técnicos e Científicos, 1996. v. 4. [Exemplares disponíveis: 32]